\(y\) \(\frac{\mathrm{d}y}{\mathrm{d}x}\) \(\int \!y\, \mathrm{d}x\) (+ constant)
sin \(x\) cos \(x\) \(-\)cos \(x\)
cos \(x\) \(-\)sin \(x\) sin \(x\)
tan \(x\) sec\(^2 x\) ln\((\)sec \(x)\)
arcsin \(x\) \(\frac{1}{\sqrt{1\:-\:x^2}}\) \(x\) arcsin \(x + \sqrt{1 - x^2}\)
arccos \(x\) \(-\frac{1}{\sqrt{1\:-\:x^2}}\) \(x\) arccos \(x - \sqrt{1\:-\:x^2}\)
arctan \(x\) \(\frac{1}{1\:+\:x^2}\) \(x\) arctan \(x - \frac{1}{2}\)ln \((x^2 + 1)\)
sec \(x\) sec \(x\) tan \(x\) ln\(\mid\)sec \(+\) tan \(x \mid,\)
ln\(\mid\)tan\((\frac{1}{2}x + \frac{1}{4}\pi)\mid\)
csc \(x\) \(-\)csc \(x\) cot \(x\) \(-\)ln\(\mid\)csc \(x +\) cot \(x\mid,\)
ln\(\mid\)tan \(\frac{1}{2}x\mid\)
cot \(x\) \(-\)csc\(^2 x\) ln\(\mid\)sin \(x\mid\)
arcsec \(x\) \(\frac{1}{x^2\sqrt{1\:-\:\frac{1}{x^2}}}\) \(x\) arcsec \(x - \frac{\sqrt{1\:-\:\frac{1}{x^2}}\:x \ln{\sqrt{x^2\:-\:1}\:+\:x}}{\sqrt{x^2\:-\:1}}\)
arccsc \(x\) \(-\frac{1}{x^2\sqrt{1\:-\:\frac{1}{x^2}}}\) \(x\) arccsc \(x + \frac{\sqrt{1\:-\:\frac{1}{x^2}}\:x \ln{\sqrt{x^2\:-\:1}\:+\:x}}{\sqrt{x^2\:-\:1}}\)
arccot \(x\) \(\frac{1}{x^2\:+\:1}\) \(\frac{1}{2}\)ln \((x^2 + 1) + x\) arccot \(x\)